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A

 

BSTRACT

 

This paper describes a set of metrics for evaluating the simulation of clouds, radiation, and precipitation 

in the present-day climate. As with the skill scores used to measure the accuracy of short-term weather 

forecasts, these metrics are low-order statistical measures of agreement with relevant, well-observed phys-

ical quantities. The metrics encompass five statistical summaries computed for five physical quantities 

(longwave, shortwave, and net cloud radiative effect, projected cloud fraction, and surface precipitation 

rate) over the global climatological annual cycle. Agreement is measured against two independent observa-

tional datasets.

The metrics are computed for the models that participated in the Coupled Model Intercomparison 

Project phase 3, which formed the basis for the Fourth Assessment of the IPCC. Model skill does not 

depend strongly on the dataset used for verification, indicating that observational uncertainty does not limit 

the ability to assess model simulations of these fields. No individual model excels in all scores though the 

“IPCC mean model,” constructed by averaging the fields produced by all the CMIP models, performs par-

ticularly well across the board. This skill is due primarily to the individual model errors being distributed 

on both sides of the observations, and to a lesser degree to the models having greater skill at simulating 

large-scale features than those near the grid scale. No measure of model skill considered here is a good pre-

dictor of the strength of cloud feedbacks under climate change. 

The model climatologies, observational data sets, and metric scores are available on-line. 
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1 Assessing the skill of weather forecasts and climate projections

 

Global numerical weather forecasts have been made operationally since 1979 and have 

improved steadily since their advent [

 

Kalnay et al.

 

, 1998; 

 

Simmons and 

 

Hollingsworth

 

, 

 

2002]. It is 

possible to trace the quantitative increase in skill over time because forecasts have been evaluated 

against observations in a consistent manner for decades. The World Meteorological Organization, 

for example, defines a “standard verification system” (SVS) which is a set of low-order statistics 

measuring forecast skill that operational forecasting centers compute monthly and share with one 

another [

 

World Meteorological Association

 

, 

 

1992]. Skill is measured against both raw observations 

(typically radiosondes) and against the analysis produced after the fact for the forecast time. 

Weather forecast assessment is primarily focused on the large-scale flow: only temperatures, 

winds, sea level pressure, and geopotential height are part of the standard verification system. In 

particular, no information is formally exchanged between centers about forecasts of clouds, radia-

tion, or precipitation (though centers may verify precipitation forecasts internally). Clouds and 

radiation are neglected in part because verification is difficult: these fields are much more spatially 

and temporally variable than winds, temperature, and pressure, so measurements made at individ-

ual points are less representative of the grid-column mean produced by the forecast. Analyses are 

not useful for verification, either, because observations of clouds and broadband radiation are not 

used by operational assimilation systems, so that cloud- and radiation-related quantities are only 

loosely constrained in the resulting analyses. In addition, though the distribution of clouds, radia-

tion, and precipitation may be of importance for specific applications, it has a minor impact on the 

short- to medium-term evolution of the flow on which forecast skill scores are based. 

Unlike weather forecasts, the climate models used to make long-term projections have not 

been subject to uniform assessment over time. Climate model evaluation is, in some ways, more 

difficult than assessing the skill of short-term weather forecasts because climate models solve a 

boundary value problem as opposed to the initial value problem posed in weather forecasting. 

This blurs the association between time in the model and time in nature, so model forecasts can’t 

be compared with observations on a day-to-day or month-to-month basis. Furthermore, climate 

models are primarily used to make projections over very long time scales (decades to centuries), 

and these projections can not be directly assessed until that time has passed. 
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In lieu of direct assessment of long-term trends, climate models are evaluated according to 

their ability to simulate present-day conditions and the historical record. Evaluation typically 

includes comparisons against observations of the mean climate and of variability at various forced 

(annual, diurnal) and unforced (El Niño-Southern Oscillation, Madden-Julian Oscillation) time 

scales, and may include the response to forcings such as volcanic eruptions and changes in atmo-

spheric composition. (See, as one example, the papers describing the current version of the cou-

pled climate model CM 2.1 produced by the Geophysical Fluid Dynamics Laboratory, including 

 

GFDL GAMDT

 

 [2004] and 

 

Wittenberg et al.

 

 [2006].) Attempts to identify which aspects (if any) 

of the current climate are the best predictors of climate sensitivity or related quantities have so far 

been unsuccessful, so a model’s skill in simulating the present day climate may not reflect accu-

racy in long-term projections. Nonetheless, it seems unlikely that a model that does a poor job 

simulating the current climate will somehow produce credible long-term projections. This is one 

motivation for developing a suite of metrics for evaluating a model's climatology (e.g. 

 

Gleckler et 

al.

 

, 2007, hereafter GTD2007). 

Clouds strongly modulate the long-term evolution of the atmosphere, and cloud feedbacks on 

the climate system have remained the single largest source of uncertainty in climate projections 

since the Intergovernmental Panel on Climate Change (IPCC; see http://www.ipcc.ch) began issu-

ing Assessment Reports in 1990 (compare the discussions of uncertainty in the First Assessment 

report [

 

Houghton et al.

 

, 1990] and the Fourth [available from http://ipcc-wg1.ucar.edu/wg1/wg1-

report.html]). For this reason there is far greater motivation for including the clouds in the evalua-

tion of climate models than in short-term forecast models. There are, however, no standard met-

rics for judging model skill in simulating present-day cloudiness or related quantities such as 

rainfall and radiation. 

This paper proposes metrics for evaluating global simulations of radiation, clouds, and precip-

itation, focusing on measures most relevant for evaluating multi-year simulations. The next sec-

tion describes the metrics in detail, including choices regarding the quantities, domain, and 

summary measures, while Section 3 reports the scores for the current generation of climate mod-

els and several other models that might be expected to perform substantially better. We will dem-

onstrate that the best agreement with the present-day distribution of clouds and related quantities 

comes from averaging over all the available models, and in Section 4 we explore the mechanisms 

that lead to this result. As we describe in Section 5, we find no relationship between skill in simu-
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lating the present-day climate and the cloud feedback parameter that plays an important role in 

determining climate sensitivity. 

 

2 Metrics for assessing global simulations of clouds, radiation, and 

precipitation

 

In developing metrics for evaluating clouds in climate models we have been guided by the 

desire to stay as close as possible to the WMO standard verification system. Metrics are defined 

by four choices: the physical parameter being evaluated; the set of observations against which the 

models are evaluated; the space and time domain over which statistics are computed; and the sta-

tistical measure used. We seek to evaluate the simulation of quantities that are both well-observed 

and relevant to climate change projections. 

 

a. Quantities and observational data sets

 

We evaluate five quantities: total cloud fraction, surface precipitation rate, and three measures 

of the cloud radiative effect at the top of the atmosphere (clear-sky flux minus total flux for long-

wave [LW], shortwave [SW], and the net radiation at TOA). Global observational estimates of 

each of these quantities are available from two or more independent programs. Cloud radiative 

effect is included to provide a coarse but integrated measure of the distribution of cloud properties 

in space and time. For comparison we also compute scores for the TOA all-sky LW, SW and net 

fluxes, but metrics based on these fluxes are less indicative of model skill for several reasons. 

Most importantly, the spatial and temporal patterns of TOA flux are strongly constrained by the 

pattern of insolation, including the strong equator-to-pole gradient and the seasonal cycle, and all 

models compute the insolation substantially correctly. (Insolation affects the outgoing longwave 

flux through the temperature response.) Secondarily, all climate models are tuned until energy bal-

ance is achieved at the TOA in the global, annual mean, and many [see, e.g. 

 

GFDL GAMDT

 

 2004] 

tune so that the mean SW and LW fluxes at the TOA match the ERBE observations, which makes 

comparison with those fluxes less independent 

Table 1 lists the primary and secondary datasets used for each quantity, along with the epoch 

for which observations are available. We assume that each set of observations is sufficient to 

describe a time-stationary climatology, though the length of the observational records varies by 
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parameter and data source. As we will show in the next section, the primary and secondary obser-

vational estimates of each field are, in every case, in better agreement with each other than the 

models are with either data source, so our results are not strongly influenced by this assumption. 

 

b. Temporal and spatial domain

 

Following the standard verification system, we interpolate all quantities onto a uniform 2.5 x 

2.5 degree grid. We compute the mean annual cycle by separately averaging each month over the 

observational record to obtain 12 maps, one for each month, of each quantity. We have not decom-

posed the globe into subdomains as the WMO Standard Verification System does, but this might 

be easily done. 

 

c. Statistical summaries 

 

The standard verification system used by weather forecasting centers comprises root-mean-

square (RMS) error, mean error (bias), and anomaly correlation for each variable, computed sepa-

rately for each forecast and averaged over each month. By analogy to these scores we compute 

five statistical summaries: RMS error 

 

e

 

, mean bias , centered RMS error , the ratio of the 

standard deviations 

 

s

 

, and the correlation 

 

r

 

, defined so that bias is positive when model values 

exceed those observed and 

 

s

 

 > 1 when model values are more variable than observed. (We replace 

anomaly correlation with correlation because the former requires the climatological value for the 

space/time domain to be removed but, in our case, climatology is exactly the signal we seek to 

evaluate.) The five quantities are related by 

(1)

where  refers to the standard deviation of the observed field in the time/space domain. The geo-

metric relationships in (1) form the basis of the “Taylor diagrams” [

 

Taylor

 

, 2001] used to visualize 

results in the next section. We compute statistics over the twelve monthly mean maps, weighting 

each column by its surface area, to assess the simulation of both the annual cycle and spatial vari-

ability (c.f. 

 

GDT2007

 

). 
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3 How well does the current generation of climate models simulate clouds, 

radiation, and precipitation? 

 

a. Models assessed in this study

 

We compute statistics for the set of climate models that participated in the World Climate 

Research Programme's (WCRP's) Coupled Model Intercomparison Project phase 3 (CMIP3) 

multi-model dataset used to prepare the IPCC Fourth Assessment (IPCC AR4; see http://ipcc-

wg1.ucar.edu/wg1/wg1-report.html). Monthly mean values were obtained from the archives 

maintained by the Project for Climate Model Diagnosis and Intercomparison (PCMDI) and 

described by 

 

Meehl

 

 

 

et al.

 

 [2007]

 

. We evaluate the models’ performance from 1979-1999 in two sets 

of runs: one in which the atmospheric models are coupled to dynamical ocean models that com-

pute the sea surface temperature (20th century runs, for which 22 models provided output) and 

one in which the sea surface temperature is specified (AMIP runs, 12 of the 22 models). The mod-

els are listed in Table 2 and described in more detail on the PCMDI web site (http://www-

pcmdi.llnl.gov/ipcc/model_documentation/ipcc_model_documentation.php). Many models sub-

mitted ensembles of simulations; for these we use the ensemble mean averaged over each month. 

(Results in Section 4 indicate that model performance does not depend strongly on ensemble 

size.)We have excluded the BCC CM1 because, as of this writing, the fields in the archives were 

so different from the observations as to dominate our results. Not all models provided data for 

every field. 

In addition to the models participating in CMIP3/AR4, we compute statistics for four models 

that might be expected to behave substantially differently. One is the “super-parameterized” ver-

sion of the NCAR Community Atmosphere Model [

 

Khairoutdinov et al.

 

, 

 

2005] in which the physi-

cal parameterizations are replaced by a copy of a two-dimensional fine-scale cloud resolving 

model in each grid cell. The Super-CAM has been run for 13 years (1986-1999) using AMIP-

specified sea surface temperatures [

 

Khairoutdinov et al.

 

, 

 

2007]. The second is the “IPCC mean 

model” computed by averaging the monthly mean fields provided by each model (using the single 

ensemble mean for models that provided ensembles), computed separately for the AMIP and 20th 

century ensembles. We also include 12-hour forecasts created as part of the 40-year reanalysis 

product by the European Centre for Medium-Range Weather Forecasts (ERA-40, see 

 

Uppala et 

al.

 

, 2005). Over much of the globe wind, temperature, and humidity fields in these forecasts are 
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tightly constrained by observations during the analysis cycle. These fields are therefore expected 

to be much closer to those observed than are the free-running climate models, so errors in the 

cloud, radiation, and precipitation fields can be attributed to errors in the underlying cloud or 

boundary layer parameterizations to a much greater extent than in any of the other models. 

Finally, we include a run of a current version (Cycle 32R1) of the ECMWF forecast model run 

from 1 Dec 1991 - 1 Dec 2001 using specified sea surface temperatures (i.e. as an AMIP simula-

tion). This model has substantially higher resolution than most climate models (T159 with 91 lev-

els) but has been developed for weather forecasting applications rather than climate projections. 

As with the observations, we compute mean monthly climatologies of radiative fluxes, cloud 

radiative effect, cloud fraction, and surface precipitation rate by averaging each month over the 

twenty-year period (or whatever period is available). 

 

b. Skill measures 

 

Figure 1 provides a qualitative overview of the relative skill of each model in simulating the 

present-day annual cycle and spatial distribution of clouds, radiation, and surface precipitation. 

Each row of this “portrait diagram” (see 

 

GTD2007

 

) corresponds to a skill measure (e.g. RMS 

errors in top-of-atmosphere cloud radiative effect) and each column to a model run; AMIP and 

20th century runs of the same model have been grouped together. The upper left and lower right 

triangles in each square show performance as measured against the primary and secondary obser-

vations respectively. We convert the five statistics we have calculated to quantities that increase 

monotonically with model error by showing 

 

e

 

, , , . These error measures are 

then expressed as a fractional deviation from the mean value of that error measure, where the 

mean is computed across all the CMIP3 models (including the mean model). That is, for a given 

error measure 

 

E

 

 computed by evaluating field 

 

f

 

 against model 

 

m

 

 using observational data set 

 

r

 

 the 

fractional error is defined by 

(2)

Normalization by  is possible because mean errors are significantly larger than 0 in the set of 

metrics considered here. In Figure 1, values of  (i.e. models with smaller errors than the 

mean error) are shaded in blue and values of  in red. The black horizontal line separates 

e' e 1, r– 1 s–

E'mfr

Emfr E fr–

E fr

-------------------------=

E fr

E'mfr 0<

E'mfr 0>
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the metrics computed for cloud fraction, precipitation rate, and cloud radiative effect from those 

computed for top-of-atmosphere fluxes. 

Several conclusions regarding the CMIP3 models can be drawn from Figure 1. First, although 

some models agree well with observations in many aspects of the simulation, all models have 

their weak areas, as indicated by areas of reddish color in every column. Secondly, in almost all 

cases, the IPCC mean model is closer to the observations than any of the individual models. 

GTD07 note both of these behaviors across a much wider range of metrics in the 20th century 

simulations. In most cases the relative performance of individual models across this set of metrics 

does not depend strongly on the verification data set (i.e. the two triangles in each box are typi-

cally close in shade), implying that all simulations of clouds, radiation, and precipitation differ 

markedly from the observations regardless of the data set used to define climatology. Finally, we 

note that a model’s relative performance with respect to any given metric is not especially sensi-

tive to whether the model is run with specified sea surface temperatures or using a dynamic ocean 

and 20th century forcings. 

The performance of the alternative models provide a useful point of comparison to the results 

from the CMIP3 climate models. The results from ECMWF reflect, in part, the effects of model 

development over time. ERA-40 was produced with a model introduced in Oct, 1999, using short 

forecasts from analyses; C32R1 was introduced in September 2006 and, for the data provided 

here, was run in a mode similar to climate models, so that day-to-day dynamics and thermody-

namics are not constrained by observations. Nonetheless, errors in most cloud, radiation, and pre-

cipitation quantities are substantially smaller in C32R1 than in ERA-40. (Errors in cloud fraction 

are comparable.) It is also possible that some errors in ERA-40 arise from imbalances in the anal-

yses that the model removes in the first few hours of the forecast. The super-parameterized CAM, 

in contrast, does not perform particularly well on these metrics for clouds, radiation, and precipi-

tation, despite the fact that many other aspects of simulations with the super-parameterized CAM 

are improved over the standard version of the model [

 

Khairoutdinov et al.

 

, 

 

2007]. This may reflect 

the relatively short amount of time and limited resources that have been devoted to tuning the 

model to the present-day climate. We have omitted results for cloud fraction because, unlike every 

other model in our sample, cloud fraction in the super-parameterized CAM does not affect radia-

tive fluxes, which are calculated using the exact amount of condensate in each column in the 

cloud-resolving model. Comparisons using the ISCCP simulator [

 

Klein and Jakob

 

, 1999] are in 
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reasonable agreement with observations [

 

Khairoutdinov et al.

 

, 

 

2007], but these estimates incorpo-

rate information about the ISCCP cloud detection method, making them difficult to compare to 

the rest of the models.

A more quantitative view of the agreement between the observations and model simulations 

may be obtained from the Taylor diagrams in Figure 2, which show, for each data set, the correla-

tion with the observations and the standard deviation (i.e. the terms 

 

r

 

 and 

 

s 

 

that make up the cen-

tered RMS error  as shown in (1)). The centered RMS error is indicated by the distance to the 

intersection of the dashed line and the x-axis with units and measures identical to the x-axis.We 

have modified the diagrams to show the bias  with symbols whose size can be measured against 

the radial axis. Metrics for each quantity are computed with respect to the primary data set listed 

in Table 1, and differences between the primary and alternative observational estimates are shown 

in red. A data set that agreed perfectly with the observations (i.e. had 

 

s

 

 = 1, 

 

e’

 

 = 1, and , and 

hence 

 

e

 

 = 0) would lie on the horizontal axis where it intersected the dashed line. Models may 

have the same correlation with observational data set while being poorly correlated with each 

other, so points which are close to one another on the Taylor diagram should be understood as 

being equally far from the observational data set rather than necessarily close to one another. 

The Taylor diagrams confirm several conclusions drawn from the portrait diagram, namely that 

the mean model performs better on essentially every count than do any of the individual models 

that comprise it, and that model simulations of clouds, radiation, and precipitation are not system-

atically better in either the AMIP or 20th century simulations. The Taylor diagrams also demon-

strate that the alternative observational data set is in better agreement with the primary 

observations than are any of the models. The agreement is notable because, for any given quantity, 

the two observations may be derived from different instruments during different, even non-over-

lapping, epochs. This indicates that model simulations disagree with the observational record so 

much that observational uncertainty does not limit the ability to gauge model improvement.Simu-

lations of top-of-atmosphere radiative fluxes are uniformly in better agreement with observations 

than simulations of cloud radiative effect for the reasons discussed in Section 2. 

Taylor diagrams for the net, longwave, and shortwave fluxes are shown for comparison in 

Figure 3. As we noted in Section 2, the spatial and temporal structure of these fields is dominated 

by distribution of insolation, which is well-modeled. 

e'
2

e

e 0=
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4 Why does the mean model perform so well? 

 

As we noted in the last section, the best agreement in the predictions of clouds, radiation, and 

precipitation is achieved by the IPCC mean model, which is constructed by averaging each field 

during each month across all models in the ensemble. GTD07 note the same behavior across a 

much wider range of physical variables. There are at least two mechanisms that might lead to this 

result. One possibility is that models do a better job simulating large-scale, slowly varying fea-

tures than those nearer the grid scale at monthly time resolution. High scores for the mean model 

fields might then arise because the mean model fields are smoother in space and time than any of 

the individual models, leaving the large-scale agreement but removing the small-scale errors. The 

second possibility is that the systematic errors associated with individual models are, to some 

extent, distributed around no error, so that averaging across a range of models reduces those sys-

tematic errors. Here we attempt to distinguish the degree to which each of these mechanisms is 

responsible for the success of the IPCC mean model by comparing metrics computed for a single 

model run with those computed a) when the model fields have been smoothed and b) for fields 

derived from a range of ensembles. 

We use a 20th century run from the MRI CGCM ensemble as a baseline since the ensemble is 

of intermediate size (five members) and, in the mean, performs reasonably well on most metrics. 

We compare the skill of this single model run to 1) the four other individual runs from the MRI 

CGCM ensemble; 2) the mean of the MRI CGCM ensemble; 3) the same individual run of the 

MRI CGCM after spatial smoothing; 4) a set of five member ensembles consisting of our baseline 

run and four other individual runs chosen at random from all individual runs in the IPCC ensem-

ble; and 5) the IPCC mean model. We compute the spatially-smoothed version of the baseline run 

(item 3) by replacing the climatological value in each grid cell with the running mean of that value 

and its four closest neighbors, then iterating the process. We convert metric scores to errors as 

described in Section 3, then normalize each error by the error in the baseline run (i.e. 

, where 

 

b indicates the baseline run and 1 denotes the primary observation 

dataset). 

Figure 4 shows the distribution of relative errors in all 25 metrics for each of these four scenar-

ios. Errors are comparable in each of the members of the MRI CGCM ensemble: relative errors 

across all metrics and all four alternate ensemble members range from 89-119%, with a mean of 

Ẽmf 1 Emf 1 Ebf 1⁄=
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99.8%. The ensemble mean, constructed by averaging the monthly map of each quantity across 

ensemble members before computing the metrics, performs very slightly better (range of 92-

107% and mean of 99%). Spatial smoothing improves the metric scores modestly but measurably. 

The third column of Figure 4 shows the distribution of relative errors when each field has under-

gone three iterations of spatial smoothing, which results in a mean relative error of 89%. (The 

mean relative error decreases for each of the first four iterations of smoothing; the value is nearly 

the same after four or five iterations.) Finally, we compute scores for a set of five multi-model 

ensembles containing five members each (to match the size of the MRI CGCM ensemble) but 

containing, in addition to the baseline run, four individual runs chosen randomly from the full set 

submitted to CMIP3. Excepting the mean bias for shortwave cloud radiative effect and surface 

precipitation (two scores on which the baseline run does particularly well), the multi-model 

ensembles are in substantially better agreement with the observations than any version of the sin-

gle GCM: the mean relative error across all metrics is 67%, nearly as small as the mean relative 

error of the full IPCC ensemble (63%; see the last column of Figure 4). 

We infer that the IPCC mean model’s good agreement with observations is due to both spatial 

smoothing and compensating systematic errors, but that the latter is more important. 

5 Relating cloud feedbacks to present-day simulations of clouds, radiation, and 

precipitation

As we noted in Section 1, the most significant application of climate models is for projections 

of long-term climate change, for which climate sensitivity is often used as a proxy. Much of the 

diversity in estimates of climate sensitivity, in turn, arises from cloud-related feedbacks on cli-

mate change. In particular, much of the range in climate sensitivity in present-day models can be 

traced to differences in how shallow clouds in the tropics respond to climate change [Bony and 

Dufresne, 2005]. It would therefore be intriguing if there were a systematic relationship in this set 

of models between present-day skill in predicting cloud fields and some measure of how clouds 

respond to a changing climate. 

We have searched for an association by linearly regressing each of the metrics shown in 

Figure 1 with estimates of the cloud feedback parameter made by Soden and Held [2006] and find 

no such relationships. Linear correlation coefficients vary from 0 to a maximum of 0.53, indicat-
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ing that none of our metrics for evaluating the fidelity of present-day simulations of clouds and 

radiation is a good predictor of cloud feedbacks under climate change in this set of models. We 

have also inspected the resulting scatter plots but find no evidence for any non-linear relation-

ships. 

6 Conclusions

Though climate and weather forecasting models are structurally similar (and, in at least one 

case, even the same code), the culture of assessment in the two communities is quite different. To 

some degree this reflects the fact that weather forecasts can be verified directly in a way that is 

impossible for climate projections. Nonetheless, it is striking that weather forecasting centers can 

point to almost two decades worth of improving forecast skill scores as evidence that investment 

in forecasting leads to better forecasts, while the climate modeling community has a difficult time 

making a similar case quantitatively. We suggest that this argues for the routine calculation and 

dissemination of performance metrics for climate models. Such metrics might make it easier to 

defuse criticism based, for example, on the fact that the range of climate sensitivity reported in the 

IPCC assessments has not narrowed over time by demonstrating that the models have gotten bet-

ter at simulating the present-day climate. As we noted in Section 1, though agreement with 

present-day observations does not guarantee that projections of climate change will be correct, 

such agreement seems desirable. 

We expect that comprehensive evaluation of the simulation of present clouds, radiation, and 

precipitation could require more metrics than are presented here. To assist in the development of 

additional metrics we have made available the composite annual cycles for each model run and for 

the observational data sets used in this study, along with the metrics themselves. These may be 

obtained by visiting [web address to be provided]. We expect, however, that some useful metrics 

can not be computed using only the composite annual cycle. This is perhaps most true for precip-

itation, since rainfall rate varies so dramatically in space and time and since, in many cases, it is 

the extreme events which matter most. We expect that there may be some utility in adapting quan-

titative precipitation forecast skill scores (see, e.g., Wilks, 1995), which account for the entire dis-

tribution of rainfall rates, to the assessment of climate models; this will necessitate changes in the 

data archiving strategy at most climate modeling centers. 
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Figures 1 and 2 show that the two estimates of top-of-atmosphere cloud radiative effect and 

fluxes we have used (CERES ES-4 “ERBE-like” and ERBE S-4G) are in better agreement with 

each other than with any of the models (including the mean model), indicating that observational 

uncertainty does not limit our ability to gauge model performance. This may change, however, 

with the advent of new CERES data products. These estimates begin with the same measurements 

as the ES-4 products but use substantially improved algorithms including better scene identifica-

tion, a wider diversity of angular models, and more accurate time interpolation. At this time it is 

not possible to use these products to compute cloud radiative effect: only the CERES SRBAVG 

products are available as yet, and these contain significant amounts of missing values for clear-sky 

fluxes on a monthly basis because the tests for clear sky are so stringent. Data sets that use addi-

tional information to estimate the clear-sky fluxes (i.e. the AVG and SYN data sets) are still in 

development. When they are released these data are likely to be substantially more accurate than 

ERBE, so quantities may well differ from the ERBE estimates by amounts as large as the differ-

ence between ERBE and the current generation of models. Nonetheless, we anticipate that model 

performance with respect to radiation will be best judged against these new products when they 

become available. 
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Table 1: Quantities used to evaluate clouds, radiation, and precipitation in climate model 

simulations, and the observations against which the models are compared. 

Quantity
Observational 

data set Epoch
Alternative 

observations Epoch

Top-of-atmosphere 

cloud radiative forcing 

(LW, SW, net)

CERES ES-4 

(“ERBE-

like”)

Mar 2000 - 

Dec 2005

ERBE S-4G Nov 1984 - 

Feb 1990

Cloud fraction ISCCP D2 Jul 1983- 

Dec 2004

MODIS/

Terra Collec-

tion 5

Mar 2000 - 

Dec 2006

Surface precipitation 

rate

GPCP v2 Jan 1979 - 

Apr 2005 

CMAP Jan 1979 -

June 2002

Top-of-atmosphere 

radiative flux

(LW, SW, net)

CERES ES-4 

(“ERBE-

like”)

Mar 2000 - 

Dec 2005

ERBE S-4G Nov 1984 - 

Feb 1990
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Table 2: Models for which metrics have been computed. Where ensembles have been provided the 

monthly average is computed across all members of the ensemble. The “IPCC mean model” is the 

average of the monthly climatologies for each model. Where centers have submitted more than 

one model the institution and country are listed only for the first model. 

Institution Country Model name
Ensemble 

size - AMIP
Ensemble 

size - 20th C

Bjerknes Centre for Climate Research Norway BCM 2.0 1

National Center for Atmospheric 

Research

USA CCSM 3 1 4

PCM 1 2

Canadian Centre for Climate Model-

ling & Analysis

Canada CGCM 3.1 (T47) 5

Canadian Centre for Climate Model-

ling & Analysis

Canada CGCM 3.1(T63) 1

Météo-France / Centre National de 

Recherches Météorologiques

France CNRM CM3 1 1

CSIRO Atmospheric Research Australia CSIRO Mk3.0 3

Max Planck Institute for Meteorology Germany ECHAM5/MPI-

OM

3 3

Meteorological Institute of the Uni-

versity of Bonn, Meteorological 

Research Institute of KMA

Germany, 

Korea

ECHO-G 5

LASG / Institute of Atmospheric 

Physics

China FGOALS g1.0 3 3
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NOAA / Geophysical Fluid Dynamics 

Laboratory

USA GFDL CM 2.0 3

GFDL CM 2.1 3

NASA / Goddard Institute for Space 

Studies

USA GISS AOM 2

GISS EH 5

GISS ER 4 9

Institute for Numerical 

Mathematics

Russia INM CM 3.0 1 1

Institut Pierre Simon Laplace France IPSL CM 4 6 2

Center for Climate System Research, 

National Institute for Environmental 

Studies, and Frontier Research Center 

for Global Change

Japan MIROC 3.2 

(hires)

1 1

MIROC 3.2 

(medres)

3 3

Meteorological Research Institute Japan MRI CGCM 

2.3.2

1 5

Hadley Centre for Climate Prediction 

and Research / Met Office

UK UKMO HadCM3 2

Table 2: Models for which metrics have been computed. Where ensembles have been provided the 

monthly average is computed across all members of the ensemble. The “IPCC mean model” is the 

average of the monthly climatologies for each model. Where centers have submitted more than 

one model the institution and country are listed only for the first model. 

Institution Country Model name
Ensemble 

size - AMIP
Ensemble 

size - 20th C
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UKMO 

HadGem3

1 2

(None) “IPCC mean 

model”

12 22

Colorado State University USA SuperCAM 

(1986-2000)

1

European Centre for Medium-range 

Weather Forecasts

EU ERA-40 1

ECMWF C32R1 1

Table 2: Models for which metrics have been computed. Where ensembles have been provided the 

monthly average is computed across all members of the ensemble. The “IPCC mean model” is the 

average of the monthly climatologies for each model. Where centers have submitted more than 

one model the institution and country are listed only for the first model. 

Institution Country Model name
Ensemble 

size - AMIP
Ensemble 

size - 20th C
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Figure 1. Portrait diagram showing the relative error in global model simulations of the annual cycle of 

top-of-atmosphere cloud effect, cloud fraction, surface precipitation rate, and (below the black line) 

top-of-atmosphere radiative fluxes. Each column corresponds to a model run (asterisks denote fixed-

SST AMIP runs) and each column one of five statistical measures of agreement in one of eight 

physical parameters. White squares indicate that a model’s score for a given metric is equal to the 

mean of that score across all the CMIP3 models (including the “mean model”); darker shades of blue 

indicate better-than-average scores and shades of red worse-than-average scores. Within each square 

the upper-left triangle denotes agreement with the primary observational data set and the lower-right 

triangle agreement with the alternate data set. Gray indicates that no data is available.

Figure 2. Summary Taylor diagrams showing errors in top-of-atmosphere radiative fluxes, top-of-

atmosphere cloud forcing, cloud fraction, and surface precipitation rate computed over the mean 

annual cycle. Following Taylor (2001), the radial distance from the origin denotes the standard 

deviation of each data set (the primary observations are shown as a dashed radius) and the angular 

distance from the horizontal denotes the correlation coefficient R between each data set and the 

primary observations. The centered RMS error is indicated by the distance to the intersection of the 

dashed line and the x-axis with units and measures identical to the x-axis. Here the size of the symbol 

(diameter for circles, edge length for squares) indicates the mean bias and a yellow outline indicates a 

negative bias. Each diagram includes both the AMIP (blue) and 20th century (gray) runs; where a 

model has submitted both runs the points are joined by a line. The IPCC mean model, computed 

separately for the AMIP and 20th century ensembles, is shown as a square, while the ECMWF models 

are shown in pink (ERA40) and yellow (C32R1). The super-parameterized CAM is shown in green, 

and all three versions of the NCAR CAM are denoted with asterisks. Metrics for each quantity are 

computed with respect to the primary data set listed in Table 1; differences between the primary and 

secondary observational estimates are shown in red.
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Figure 3. Taylor diagrams for net, longwave, and shortwave flux components at the top of the atmosphere 

evaluated against CERES. The color coding of the model points follows Figure 2. Agreement with the 

observations is much better than in Figure 2 because temporal and spatial variations in the TOA flux 

field are dominated by the well-understood pattern of insolation. 

Figure 4. Distribution of errors across all metrics, relative to a single run of the MRI CGCM, for fields 

which have been averaged or spatially smoothed. The median of each distribution is shown as a 

horizontal bar and the inter-quartile range as a box. The whiskers extend to 1.5 times the inter-quartile 

range, with values beyond that marked with individual points. The sample size varies from column to 

column according to the number of model realizations used. All members of the MRI CGCM 

ensemble (the first column) show comparable errors, while the ensemble mean performs slightly better 

than the individual runs. Spatial smoothing improves many metric scores, but the most dramatic 

improvements come from averaging across multi-model ensembles, even when the ensemble size is no 

larger than the MRI CGCM ensemble. 
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